

"TRANSPORT INFRASTRUCTURE INNOVATIONS -2015"

Development of regional transportation models as a supporting tool for estimation of functional efficiency of infrastructural investments

prof Andrzej Szarata Cracow University of Technology Department of Transportation Systems aszarata@pk.edu.pl www.zsk.pk.edu.pl

Vilnius, 10th of January 2015

Introduction

Multimodal approach

 Multimodal approach – necessity in projects financed by EU

Multimodal approach

Classical approach – four stage models

- Number of trips generated by TAZ
- Trip distribution
- Mode choice
- Assignment
- Input data?

Input data

- Supply model of the network (roads, bus routes, rail connections, timetable etc.)
- Demand results of the comprehensive travel study (household survey)
- 3. Measurement data (model verification and validation)
 - Traffic measurements
 - Passenger counts

Example of household survey -Malopolska province

- 4 400 households (over 11 000 persons) 1,2% of the population
- Inhabitants older then 12 years old
- Trip diary
- Opinions about transport system
- Passengers' expectations

Sample size

Sample size

Focus Group Interviews

- For selected group of inhabitants
- 6 groups / 6 persons each
- Not representative survey
- Support in household survey form development
- What words/expressions should be used

Chosen results

Mobility rates

Average travel time

Modal split – PuT

Chosen results of the qualitative part

- The respondents are convinced of the superiority of private transport (car, bike less often) then public one
- The car is regarded by respondents as the most modern means of transport
- The railway is considered one of the most comfortable, user-friendly means of travel for passengers (in spite of many defects)
- At the moment, the tendency to permanent change to the public transport is small

Simulation model of the Malopolska Province (voivodeship)

Administrative divisions of Poland

16 voivodeship (provinces)

Supply model

- Division of the province into traffic analysis zones (TAZ)
- 245 TAZs
- All national and regional roads
- The most important local ones

Supply model - road network Simplified network -GIS data

Demand model

- Model refers to 1 hour
- Modelling of stops one per TAZ
- All accessible rail connections (also lines with potential)
- All bus connections
- Timetable (for whole day)

Demand model

- Four stage approach
- 7 groups of trip purposes
- Hourly share of each trip purposes

Demand model

- Number of trips
- Explanatory variables
 - Number of inhabitants
 - Number of working places
 - Number of pupils and students
- Regression analysis, e.g.:

$$P_{Home-Work} = 0,72 * l_{inhabitants}$$
 [trips/day]

Gravity

Model parameters

 $F(x_{i,j}) = \propto x_{i,j}^{\beta} e^{\gamma x_{i,j}}$

Distance between TAZ

Modal split

- $\beta_{PrT}=2,4$ (school related trips)
- $\beta_{PrT}=2,2$ (work related trips)
- $\beta_{PrT}=1,8$ (non home based related trips)
- $\beta_{PrT}=2,6$ (other trips)

Simulation results

Model validation and verification

Quality of the model

- Public transport
- 124 measurement points
- ▶ R²=0,89
- Total sum:
 - 30 692 pas/h measurement
 - 29 625 pas/h model
- Private transport
- > 213 measurement points
- ▶ R²=0,90
- Total sum:
 - 53 872 veh/h measurement
 - 54 614 veh/h model

Application of the simulation models - chosen aspects

- Development of Sustainable Transportation
 Plan for Voivodeship
- Estimation of the changes in transport infrastructure
- Effectiveness of transport system development
- Adjustment of the bus / rail routes
- Changes in the timetable re-routing optimization
- Estimation of the demand for new rail connections

Where inhabitants are travelling?

Estimated passenger volume (2015)

- Refurbishment of the rail tracks
- Investor PKP PLK
- Connection to Zakopane and Oswiecim
- Analysis of different scenarios:
 - Train speed
 - Timetable changes
 - Number of connections

Summary

- Comprehensive travel study as a base for model development
- Presented survey results seem to be enough for modelling purposes
- Model verification
- Possible analysis for each hour during a day
- Model application

Thank you!

aszarata@pk.edu.pl www.zsk.pk.edu.pl

